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Table 1 Pretriangularized equations with forces as un-
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Table 3 Pretriangularized equations of the example
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Table 2 Pretriangularized equations with displacements
as unknowns

Joint displa-

comants ¥ Internal Stresses S

-ra 1 1)

If joint displacements are considered as unknowns, the
response of the structure to external loads applied at the
jointsis given in Ref. 5 as

CX =R )
and
S = raX 5)

Equations (4) and (5) can be written jointly in Table 2.

Argyris’ equations, put in the form of Tables 1 and 2, are
exactly the equations of Klein when the ideal pretriangulariza-
tion is attained, a situation in which there exists always a
group of equations that are not pretriangularized. This
group of equations is constituted in Table 1 by Eq. (3) and
in Table 2 by Eq. (4).

Example

Consider the first example from Ref. 2. Taking as re-
dundancies the internal stresses P; and Ps, the pretriangular-
ized equations as in Table 1 are, for this case, given in Table
3. Solving the equations from Table 3, the solution given
in Ref. 2 is obtained. Incidentally, there is a minor differ-
ence: in Ref. 2, with three decimals, P; = 0.226 and Ps =
0.344. From Table 3, Py = 0.216 and Ps = 0.334. This
difference obviously is due to the fact that in Ref. 2 a matrix
of order 16 was inverted and here a matrix of order 2.
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Equivalence between Chemical-Reaction
and Volume-Viscosity Effects in
Linearized Nonequilibrium Flows

L. G. NapoLiTaxo*
Unaversity of Naples, Naples, Italy

N the theory of sound propagation in a relaxing medium,

it is a well-established fact that, for wave frequencies
much smaller than the relaxation frequency, the relaxation
process itself can be considered as having the same effect as
a volume viscosity.! It is interesting to determine under
what conditions the same statement would hold for steady
nonequilibrium flows.

It is the purpose of this note to show that this happens for
“linearized flows” when the ratio between a macroscopic
characteristic time ¢y and a suitably defined chemical char-
acteristic time is much greater than one, i.e., near-equilibrium
conditions. In these conditions, the basic equations for the
linearized motion of a reacting medium are shown to reduce
to those pertinent to an equivalent motion, at a Reynolds
number defined in terms of appropriate thermodynamic
derivatives, of an inert but viscous medium.

Assume the chemical affinity A, the specific volume », and
the entropy per unit mass of the mixture, s, as the basic set
of independent thermodynamic variables. The appropriate
thermodynamic potential  is the first-order Lagrange trans-
form?2 ® of the specific energy e with respeet to the progress
variable of the reaction £:

¢/ =€ EA = ¢(8;U;A) (1)
and the Gibbs relation
dy = Tds — pdv — &dA (2)
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defines the conjugate intensive parameters T (temperature),
p (pressure), and £ as the derivatives of ¥(s»,4) with respect
to (s,v,4), respectively.

If a superscript 0 indicates uniform equilibrium values and
a superscript 1 indicates the small perturbations caused by
initial and/or boundary conditions, the pertinent linearized
equations read

D§E'/Dt = —L°A! Ds'/Dt = 0
Dv'/Dt = vy -V’ (DV//Dt) + v'yp’ =0  (3)

where D/Dt = (3/0t) + V°-v, and V is the velocity vector.

The phenomenological coefficient L? is positive, due to the
positive character of the entropy production. System (3)
is to be implemented by the relations giving the dependent
unknowns p’ and £’ as linear combinations of the funda-
mental set (s’, v’, A’). These relations are to be obtained
from the two state equations p = p(s,,4) and &€ = £(s,4).

Accounting for Eq. (3) and for the fact that s’ = 0, one
gets

—p' = YoslA’ + Yo “(42)
A" = (/LY (DA'/DY) + (1/LY¢a(Dv'/Dt)  (4b)

where the subscripts indicate the partial derivatives of
computed at the equilibrium conditions of the basic flow
(4° = 0).

By definition [see also Eqgs. (1) and (2)],

Yol = — [(Qp/OW) a0 = (1/v"D)ab? > 0
—Yas® = [(08/0A) a0 = 1/eg® > 0

where a0 is the equilibrium speed of sound pertinent to the
basic flow, ex® is the second derivative of the specific energy
e(§,s,0) computed at equilibrium, and the inequalities follow
from the thermodynamic stability conditions. Equation
(5) permits definition of a ‘“‘chemical-relaxation time” (1/7) =
(1/L0%") as an essentially positive quantity. Equation
(4b) thus can be written as

A" = —1/1)(DA’/Dt) + (1/7)(Yale’)(Dv"/Dt)  (6)

When the first term on the right-hand side of Eq. (6) can
be neglected, one obtains

I

)

I

A" = (Ya'/L0)(Dv'/ D) O
and subsequent substitution into Eq. (4a) yields
p' = — @)’ — [ (Ya)?/ L)V -V’ @®

thus showing that the effects of chemical reaction can be
assimilated to those due to an effective coefficient of volume
viscosity defined by

7.0 = (Y)Y L] = (0/L)[(0£/d0)]aze®* >0  (9)

For wave propagation in a medium at rest (V0 = 0), the
approximate relation (7) is valid when the ratio w/7 « 1,
where w is the wave frequency. This is seen immediately
by taking the Fourier transform (subseript F) of Eq. (6)

Ar' = (lo/7)Ar" — (lw/7)(Yaleg)vs’

where 1 is the imaginary unit. For (w/7) « 1, this relation .

reduces to
Ap' = —(w/7)(PulegO)vs’

which is nothing but the Fourier transform of Eq. (7). This
essentially proves that the rate of change of A’ can be neg-
lected with respect to A’ itself in Eq. (6) when the ratio be-
tween the pertinent characteristic time associated with this
rate of change and 1/7 is sufficiently small. It follows,
then, rather straightforwardly, that Eq. (7) also will be
valid for steady flows provided [V./7l,] < 1 (where V; and
I, are suitable -reference velocity and length), that is, when
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the macroscopic characteristic time ,/V, is much larger than
the chemical one.

In this case the wave equation, obtained by scalar multi-
plication of the last of Eqs. (3) by V° and substitution of
Dp'/Dt from Eq. (8), is, accounting for Eq. (9),

[D(V-V")/Dt] — a7 V' — n3(D/DY(V V") = 0
or, in terms of nondimensional quantities,
(DVeV'/Df) — a2y -V’ = (1/Rer)VO-y (v -V')

where Rev = (V.,/1"1.%) is a Reynolds number referred to
the equivalent volume-kinematic viscosity (v°9.%) [Eq. (9)].
This form of the wave equation justifies and, at the same
time, defines the limits of the use of singular-perturbation
and/or boundary-layer-type techniques in the solution of
nonequilibrium flows.

The approach could be extended to flows in which more
chemical and/or relaxing processes occur. Much as in the
problem of acoustical-wave propagation,! one could consider
all those processes with relaxation times 1/7, much smaller
than the relevant convective characteristic time #y, as con-
tributing to an effective volume viscosity and thus treat ex-
plicitly as such only the processes with relaxation times of
the same order as ty;. Detailed derivation of the wave equa-
tion for these cases will be presented in a future note.
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Location of the Normal Shock Wave in
the Exhaust Plume of a Jet

Donarp W. EastMan* axp LroNARD P. Raprre’t
The Boeing Company, Seattle, Wash.

METHOD-OF-CHARACTERISTICS program  for

calculating the exhaust plume flow field of a single
axisymmetric jet recently has been completed.! The pro-
gram assumes inviscid flow, with no mixing along the jet
boundary.

Figure 1 shows a plot obtained from this program of the
boundary and intercepting shock wave shapes for a jet ex-
hausting into still air. As can be seen, the shock wave
suddenly becomes normal at a point downstream. This note
presents a new method for determining the location of this
normal shock.

An approximate method previously suggested by Adamson
and Nicholls? stated that the axial location of the normal
shock was that point at which the static pressure behind
the shock was equal to the receiver pressure. However, in
actuality the subsonic flow behind the shock may accelerate
to supersonic velocities and then pass through a series of -
weaker shocks.® 4 If this occurs, the preceding method can
hold only for the last shock in the series.
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